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Summary

This study investigates the effects of uncertaimtyrock-
physics models on estimates of reservoir paramdtera
joint inversion of seismic AVA and CSEM data. Treser-
voir parameters are related to electrical reststivising
Archie’s law, and to seismic velocity and densiging the
Xu-White model. To account for errors in the rodkypics
models, we use two methods to handle uncertaidfytHe
model outputs are random functions with modes oanmse
given by the model predictions, and (2) the paramestf the
models are themselves random variables. Using chastic
framework and Markov Chain Monte Carlo methods, we
obtain estimates of reservoir parameters as welbfathe
uncertainty in the estimates. Synthetic case stustiew that
uncertainties in both rock-physics models and their
associated parameters can have significant effests
estimates of reservoir parameters. Our method gesvia
means of quantifying how the uncertainty in theinested
reservoir parameters increases with increasingrtaiogy in
the rock-physics model and in the model parametgesfind
that in the example we present, the estimation afew
saturation is relatively less affected than is ésémation of
clay content and porosity.

Introduction

Rock-physics models are needed to estimate reservoi
parameters from seismic AVA and CSEM data. In peact
model parameters are often derived from nearby logt.
First, an appropriate family of rock-physics modslshosen,
such as the sand-clay models of Xu and White (1965)
seismic velocities and density, and Archie’s lawrgifie,
1942) for resistivity. Second, the parameters asset with
the rock-physics models are estimated by fittingnihto the
selected well log data. Since the relationshipswéen
reservoir parameters and geophysical attributemanénear
and non-unique, the derived rock-physics models thed
parameters are uncertain to some extent. Such tamdgr
may significantly affect estimates of reservoir graeters
from geophysical data.

Traditional methods for analyzing uncertainty ickghysics
models entail varying a small subset of the rockspls
model parameters while keeping others unchangedh Su
methods are valid only when the parameters being
investigated are uncorrelated with those being Kiqetd.
Since rock-physics parameters often depend updm aher,
the methods have limited validity. Additionally, otte
methods typically analyze only the effects of uteiety in

the rock-physics model parameters (Type 2), but thet
uncertainty in the rock-physics model outputs (T§jpe

An alternative for studying the effects of uncertgiin rock-
physics models is to utilize a Bayesian framewock
represent geophysical properties as random furstioh
reservoir parameters. In this method, the rock-jgBysodels
derived from borehole logs provide only referenadugs
(e.g., means or modes) for the reservoir parameteisg
estimated. The actual values are realizations mifagm the
estimated a posteriori probability density functipn
conditioned on the uncertainty in the rock-physiusdel as
well as on the input seismic AVA and CSEM data. An
example of such an approach is given by Bachar2066(,
where sediment bulk and shear moduli and densigy ar
considered to be random functions of reservoir wate
saturation and porosity, and the unknown reservoir
parameters are estimated jointly by conditioningseismic
AVA data. Bacharach investigates only the effect of
uncertainty in the rock-physics models (Type 1}, ot the
effect of uncertainty in the associated model patens
(Type 2). In practice, both types of uncertaintisgxand they
may affect the estimates of reservoir parametéfsrently.

In this study, we investigate the effects of uraiety in
rock-physics models on reservoir parameter estonati
caused by uncertainty in the rock-physics modelyp€rl1)
and uncertainty in the model parameters (Type 2 W
develop a stochastic method based on a layeredvoase
model, similar to the one studied by Chen et &07), with
the addition of stochastic rock-physics modelsdooant for
their contribution to the uncertainty. We use Marlahain
Monte Carlo (MCMC) methods to explore the joint a
posteriori probability density functions of the ened
parameters.

Method

Stochastic rock-physics models

We relate reservoir water saturati® and porosityg to
electrical resistivity using Archie’s law (Archi2942):

r=rS,"¢".

Here,r denotes the electrical resistivity of a given rese
layer and the model parametars m, andn denote brine
resistivity and model exponents of water saturatamd
porosity, respectivelyTwo types of uncertainty may exist in
this equation. The first is the uncertainty assedawith the
model parametens, m, andn (Type 2). To account for such
uncertainty, we consider those parameters to beoran
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variables with given distributions. The second typé
uncertainty is that associated with the model fit§Eype 1),

such as the discrepancy between the measuredvigsiahd

the predicted resistivity; i.e., Archie's Law magtrbe an
appropriate model for some situations. Similarty atcount
for the effect of this type of uncertainty, we cioles

predicted resistivity to be a random function of teva
saturation, porosity, and the model parameterslewlsing
Archie's Law to calculate the mode of the distridnit

We use a Gamma distribution function with shapeupater
o and scale parameteff to describe the uncertainty
associated with the model given in Equation 1.thetvector

0, =(r,,m,n)", whereT denotes transpose. Let the mode of

the Gamma distribution be equal to the resistipitgdicted
by Equation 1. Consequently, we obtain the comnuitio
distribution function of resistivity given reservgarameters
Sy andg and unknown model parametés as follows:

(3)
B
We relate seismic P- and S-wave velocity and dernsit
reservoir parameters using a clay-sand mixture mode
developed by Xu and White (1995). The main pararsete
associated with the Xu-White model are the bulk ahdar
moduli and density of sand grains, clay, and fliadd the
pore aspect ratios of sand and clay. The resepavameters
that affect seismic P- and S-wave velocity and ifgrese
water saturation, clay content, and porosity. We tise
vector@, to represent the entire set of model parametars, a
consider the parameters to be random variablesdardo
model parameter uncertainty (Type 2). In practibe,model
parameters are typically estimated from logs froearby
wells and have unknown uncertainties.
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To consider overall uncertainty in the Xu-White rabébr a
fixed set of model parameters, we assume thatgtiemaed
seismic velocity and density calculated from res&rv
parameters using the Xu-White model are not exaf.
model them as a truncated multivariate Gaussianilaision
with means determined from the Xu-White model and a
covariance matrix determined from an assumed adioel
structure and coefficients of variation. Let theiablesVp,

rock-physics models

Bayesian model

The Bayesian model was developed for a layeredveise
In the reservoir layer, we estimate water satumai®y,
porosity ¢, and shale contert. As in the model given by
Chen et al. (2007), we add several layers abovéalmiv the
reservoir to account for uncertainty in selectitg ttime
window for seismic AVA inversion. For those layemsg
invert for elastic bulk and shear modwi &ndp) and density
po, from which we calculateVp and Vs Because the
resistivityr, of the seawater and the sedimentary overburden
also affects the estimates of reservoir parameteesalso
consider it as an unknown vector in this model.

Unlike the analysis presented in Chen et al. (200/8) use
stochastic rock-physics models in this study. Foremy
reservoir parameters, the calculated reservoir nseis
velocitiesVp andVs, densityp, and electrical resistivity are
all considered to be random variables. Let the imd®
denote seismic AVA data, which are explicit funosoof
seismic velocity and density within the reservaind implicit
functions of elastic propertiesK( u, andp,) in the zones
outside the reservoir. Let the matiix denote CSEM data,
which are functions of reservoir resistivityand overburden
resistivity r,. Since CSEM and seismic AVA data are two
different types of geophysical measurements, iieésonable
to assume that they are statistically uncorrelaléxbrefore,
we obtain the following Bayesian model:

F(SwCo,Vp Ve p KippoF ro91 8, RED
fR Np,VSPK,llPo)(Ei‘ryo)
fEBSuw0 ¥ VpVsp Byo0ca,)
fFE e Knpytp0,.0,)

Equation 4 defines a joint a posteriori probabititgtribution
function of all unknown parameters, which is knowmto a
normalizing constant. The first and second termsherright
side of the equation are the likelihood functiorisseismic
AVA data and CSEM data, respectively, and are ¢ated
from forward modeling. The third and fourth terms the
right side of the equation are the conditional pdfgen
reservoir parameters and parameters associatedheittock
physics models; for, this is given by Equation 2. The final
term on the right side of the equation is the aorpri

4

Vs, andp denote seismic P- and S-wave velocity and density, distribution of the unknown variables, which wedédhk have

respectively. Letp, €5, ande, represent additive errors in the
rock-physics model results. Then the conditionalbpbility
density function is given by

1
P 1S, .0, )= ———ex
Jeny|z) d

whereZ is the covariance matrig, is the vectogep, €s, sp)T,
andc represents shale content.

®)

f (Vp'Vs —STZ_IS)

constant pdfs within reasonable bounds.
Synthetic Study

The synthetic model includes an oil-bearing reservo
embedded in a shale section, lying 1200 m undesehéioor,
with shale content, porosity, and water saturatibd.1, 0.32,
and 0.1, respectively. Outside the reservoir, tr@escontent
and water saturation in the shale section are anh§t00%),
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whereas the porosity decreases and the backgresrgtivity
increases with increasing depth from the seafloor.

The seismic AVA data are NMO-corrected angle gather
generated by convolving a 25 Hz Ricker wavelet vitib
angle-dependent reflectivity, which is calculatesing the
Zoeppritz equations (Aki and Richards, 1980) fochekayer
interface. The traces are sampled at 2 ms for sienihence
angles (i.e., 5, 10, 15, 20, 25, 30, and 35 depr@és assume
that the synthetic seismic data include spatiatiyrelated
Gaussian random noise and that the spatial cdoelas
determined by an exponential variogram with an grde
length of 12 ms. The variance of the Gaussian risisagle
dependent; the signal-to-noise ratios (SNRs) ard 1210, 9,
8, 7, and 5 from the near to the far offsets. We the Xu-
White model (Xu and White, 1995) with parametergegiin
Table 1 to link reservoir parameters to P- and Sewa
velocity and density. (The brine resistivity varigih depth;

it is shown for the reservoir level.)

Table 1. Parameters for the Xu-White model and &’sh
law

Types Parameters Valugs
Bulk modulus (GPa) 42.584

Sand Shear modulus (GPa) 40.470
Density (g/cn) 2.650
Aspect ratio 0.09
Bulk modulus (GPa) 34.260

Clay Shear modulus (GPa) 18.504
Density (g/crm) 2.680
Aspect ratio 0.06

Brine Bulk modulus (GPa) 3.22
Density (g/crm) 1.09

Oil Bulk modulus (GPa) 0.7%
Density (g/crm) 0.7091
Porosity exponent 2.00

Archie’s law Saturation exponent 2.00
Reservoir brine resistivity 0.11
(Q-m)

The marine CSEM data consist of the electric fields
measured at six receivers deployed on the seaflatr, an
electric dipole source at five different frequeisc{.10, 0.25,
0.50, 0.75, and 1.00 Hz). Six source-receiver tff$é, 5, 6,

7, 8, and 10 km) are used. The relationship betwedsstrical
resistivity and water saturation and porosity isegi by
Archie's law using the parameters listed in Tablé/& added
2% to 4% relative noise to the synthetic data, viitpher
noise levels at the farther offsets.

Inversion using rock-physics models with model atitp
uncertainty

We first focus on studying the effect of inherentertainty
(i.e., on computed ¥ Vs, etc.) in the rock-physics model

(Type 1) on estimates of reservoir parameters. Wert the
synthetic AVA and CSEM data (containing noise) gsin
rock-physics models with uncertainty equivalent to
coefficients of variation (CV) of 1%, 3%, 5%, an@%.

Figure 1 shows the estimated probability densitycfions
(pdfs) of water saturation, shale content, and gitraising
the stochastic rock-physics models. It is evidehatt
uncertainty in the rock-physics models has sigaificeffects
on the estimates of reservoir parameters. Withrareainty
of 5% or more in the rock-physics models, even vt
low-noise CSEM data, we cannot estimate shale oarfer
porosity, the estimates also become poorer witheasing
uncertainty in the rock-physics models. Compareditale
content and porosity, the water saturation estiniatéess
sensitive to uncertainty in the rock-physics models
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Figure 1. The estimated pdfs of water saturation, shale
content, and porosity when the rock-physics moteise
the specified levels of overall uncertainty.

Inversion using rock-physics models with both modgeH
parameter uncertainty

Parameter uncertainty (Type 2) in rock-physics no@eg.,
in the Archie's Law exponents and n) is often ignored
because of the difficulty of incorporating it inetlestimation.
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The Bayesian model developed in this study provides
flexible, integrated approach for investigating sdlurces of
uncertainty simultaneously. To investigate the affeof
parameter uncertainty, we assume that each modainpéer
lies in a given range and that the probability iofling any
value within that range is constant. In the follogsi we
consider four levels of uncertainty: 1%, 3%, 5%d dr0%
around the corresponding true values of the model
parameters, while we keep the overall uncertamthé rock-
physics model outputs constant (at 1%).

Figure 2 shows the estimated pdfs of water saturashale
content, and porosity for this case. For our lowsadCSEM
data (i.e., relative errors between 2% and 4%) small
inherent errors in the rock-physics models (1%)e th
estimated reservoir parameters still have unsatisfdy
large errors when the uncertainty in the rock-pts/snodel
parameters is 5% or more. Note that water saturaiagain
the most robustly estimated quantity.

Conclusions

The Bayesian model that we have developed provales
unified and conceptually consistent approach faalyaing
various uncertainties in reservoir parameter esttmasuch
as measurement errors, model uncertainties, araneser
uncertainties. The synthetic study shows that dairgy in
both rock-physics models and in their associatedrpaters
can, as expected, have significant effects on veser
parameter estimation, especially when those madalstheir
associated parameters are subject to errors ofadeercent
or more. Without considering uncertainty in rockypics
models, we may be overly optimistic about the iea of
our estimates of reservoir parameters. The framewor
presented here also provides a method for estighdtie
impact of other sources of uncertainty on inversesults.
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Figure 2. The estimated pdfs of water saturation, shale
content, and porosity when the parameters assdciaith

the stochastic rock-physics models have the speciévels

of uncertainty; the overall model uncertainty is t8e1% for
each case. Comparison with Figure 1 shows thatvengi
level of uncertainty in the model parameters hasnaller
effect than the same level of uncertainty in thelet@esult.



